Bayesian estimation and maximum likelihood methods represent two central paradigms in modern statistical inference. Bayesian estimation incorporates prior beliefs through Bayes’ theorem, updating ...
Bayesian estimation methods form a dynamic branch of statistical inference, utilising Bayes’ theorem to update probabilities in light of new evidence. This framework combines prior knowledge with ...
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, Vol. 46, No. 3 (September/septembre 2018), pp. 399-415 (17 pages) For sparse and high-dimensional data analysis, a valid ...
Journal of the Royal Statistical Society. Series A (Statistics in Society), Vol. 180, No. 4 (OCTOBER 2017), pp. 1191-1209 (19 pages) Area level models, such as the Fay–Herriot model, aim to improve ...
Bayesian networks, also known as Bayes nets, belief networks, or decision networks, are a powerful tool for understanding and reasoning about complex systems under uncertainty. They are essentially ...